Extensions 1→N→G→Q→1 with N=C5xC3:S3 and Q=C22

Direct product G=NxQ with N=C5xC3:S3 and Q=C22
dρLabelID
C3:S3xC2xC10180C3:S3xC2xC10360,160

Semidirect products G=N:Q with N=C5xC3:S3 and Q=C22
extensionφ:Q→Out NdρLabelID
(C5xC3:S3):C22 = S32xD5φ: C22/C1C22 ⊆ Out C5xC3:S3308+(C5xC3:S3):C2^2360,137
(C5xC3:S3):2C22 = C2xD5xC3:S3φ: C22/C2C2 ⊆ Out C5xC3:S390(C5xC3:S3):2C2^2360,152
(C5xC3:S3):3C22 = C2xD15:S3φ: C22/C2C2 ⊆ Out C5xC3:S3604(C5xC3:S3):3C2^2360,155
(C5xC3:S3):4C22 = S32xC10φ: C22/C2C2 ⊆ Out C5xC3:S3604(C5xC3:S3):4C2^2360,153

Non-split extensions G=N.Q with N=C5xC3:S3 and Q=C22
extensionφ:Q→Out NdρLabelID
(C5xC3:S3).1C22 = D5xC32:C4φ: C22/C1C22 ⊆ Out C5xC3:S3308+(C5xC3:S3).1C2^2360,130
(C5xC3:S3).2C22 = S32:D5φ: C22/C1C22 ⊆ Out C5xC3:S3304(C5xC3:S3).2C2^2360,133
(C5xC3:S3).3C22 = C32:D20φ: C22/C1C22 ⊆ Out C5xC3:S3308+(C5xC3:S3).3C2^2360,134
(C5xC3:S3).4C22 = C5xS3wrC2φ: C22/C1C22 ⊆ Out C5xC3:S3304(C5xC3:S3).4C2^2360,132
(C5xC3:S3).5C22 = C5xPSU3(F2)φ: C22/C1C22 ⊆ Out C5xC3:S3458(C5xC3:S3).5C2^2360,135
(C5xC3:S3).6C22 = C32:Dic10φ: C22/C1C22 ⊆ Out C5xC3:S3458(C5xC3:S3).6C2^2360,136
(C5xC3:S3).7C22 = C10xC32:C4φ: C22/C2C2 ⊆ Out C5xC3:S3604(C5xC3:S3).7C2^2360,148
(C5xC3:S3).8C22 = C2xC32:Dic5φ: C22/C2C2 ⊆ Out C5xC3:S3604(C5xC3:S3).8C2^2360,149

׿
x
:
Z
F
o
wr
Q
<